References
<A NAME="RU10204ST-1A">1a</A>
Schafer M.
Drauz K.
Schwarm M. In Methoden der Organischen Chemie (Houben-Weyl)
4th ed., Vol. E21/5:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.5588-5642
<A NAME="RU10204ST-1B">1b</A>
Jung ME. In
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Freming I.
Pergamon;
Oxford:
1991.
p.30-41
<A NAME="RU10204ST-1C">1c</A>
Perimutter P. In Conjugate Addition Reactions in Organic Synthesis
Pergamon;
Oxford:
1992.
<A NAME="RU10204ST-2">2</A>
Gaunt MJ.
Spencer JB.
Org. Lett.
2001,
3:
25
<A NAME="RU10204ST-3A">3a</A>
Kobayashi S.
Kakumoto K.
Sugiura M.
Org. Lett.
2002,
4:
1319
<A NAME="RU10204ST-3B">3b</A>
Wabnitz TC.
Spencer JB.
Tetrahedron Lett.
2002,
43:
3891
<A NAME="RU10204ST-3C">3c</A>
Xu L.-W.
Xia C.-G.
Hu X.-X.
Chem. Commun.
2003,
2570
<A NAME="RU10204ST-3D">3d</A>
Xu L.-W.
Li L.
Xia C.-G.
Zhou S.-L.
Li J.-W.
Hu X.-X.
Synlett
2003,
2337
<A NAME="RU10204ST-3E">3e</A>
Rivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
<A NAME="RU10204ST-4A">4a</A>
Ahn KH.
Lee SJ.
Tetrahedron Lett.
1994,
35:
1875
<A NAME="RU10204ST-4B">4b</A>
Lovel I.
Golomba L.
Popelis J.
Gaukhman A.
Lukevics E.
Appl. Organomet. Chem.
2001,
15:
67
<A NAME="RU10204ST-5A">5a</A>
Wakabayashi T.
Saito M.
Tetrahedron Lett.
1977,
18:
93
<A NAME="RU10204ST-5B">5b</A>
Wakabayashi T.
Watanabe K.
Kato Y.
Saito M.
Chem. Lett.
1977,
223
<A NAME="RU10204ST-5C">5c</A>
Fukuyama T.
Dunkerton LV.
Aratani M.
Kishi Y.
J. Org. Chem.
1975,
40:
2011
<A NAME="RU10204ST-5D">5d</A>
Mekouar K.
Genisson Y.
Leue S.
Greene AE.
J. Org. Chem.
2000,
65:
5212
<A NAME="RU10204ST-5E">5e</A>
Takasu K.
Maiti S.
Ihara M.
Heterocycles
2003,
59:
51
<A NAME="RU10204ST-6">6</A>
Takasu K.
Nishida N.
Ihara M.
Tetrahedron Lett.
2003,
44:
7429
<A NAME="RU10204ST-7A">7a</A>
Ihara M.
Ishida Y.
Tokunaga Y.
Kabuto C.
Fukumoto K.
J. Chem. Soc., Chem. Commun.
1995,
2085
<A NAME="RU10204ST-7B">7b</A>
Suzuki M.
Ihara M.
Heterocycles
2000,
52:
1083
<A NAME="RU10204ST-8">8</A> No hydroamidation was observed using the following metal salts: MnCl2, EtAlCl2, Sc(OTf)3, FeCl3, Ni(ClO4)2·6H2O, Cu(OTf)2, ZnCl2, YCl3, ZrCl4, RuCl3·nH2O, RhCl3·2H2O, RhCl(PPh3)3, Pd(OAc)2, PdCl2(PPh3)2, Pd(cod)2Cl2, InCl3, Eu(OTf)3, Gd(OTf)3, HfCl4, IrCl4·nH2O, PtCl4, BiCl3
<A NAME="RU10204ST-9">9</A> Murahashi et al. reported Pd(II)-catalyzed Wacker-type amidation reactions of
α,β-unsaturated esters in the presence/absence of CuCl:
Hosokawa T.
Takano M.
Kuroki Y.
Murahashi S.
Tetrahedron Lett.
1992,
33:
6643
<A NAME="RU10204ST-10">10</A>
General Procedure for Hydroamidation: A mixture of amide 1 (1.0 mmol), enone 2 (1.0 mmol), and Pd(PhCN)2Cl2 (1-5 mol%) was stirred for 24 h at 60 °C. The reaction mixture was diluted with CHCl3 and filtered off to remove Pd catalyst. The filtrate was concentrated and purified
by silica gel chromatography.
<A NAME="RU10204ST-11">11</A>
General Procedure for Cyclization: A mixture of 3 and t-BuOK (1 equiv) in t-BuOH was stirred for 5 h at ambient temperature. The reaction mixture was quenched
with HCl aq and extracted with EtOAc. The extracts were washed with brine, dried over
MgSO4 and evaporated. The residue was purified by silica gel chromatography. Compound 4: IR (neat): ν = 2961, 1666 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, 2 H, J = 7.5 Hz), 7.62 (t, 1 H, J = 7.5 Hz), 7.51 (t, 2 H, J = 7.5 Hz), 6.08 (br s, 1 H), 4.26 (dq, 1 H, J = 9.1, 6.3 Hz), 3.39 (ddd, 1 H, J = 12.4, 9.4, 3.2 Hz), 2.56-2.43 (m, 2 H), 2.12-2.07 (m, 1 H), 2.00-1.89 (m, 1 H),
1.18 (d, 1 H, J = 6.3 Hz). 13C NMR (100 MHz, CDCl3): δ = 200.0, 171.4, 136.0, 133.7, 128.9, 128.2, 50.5, 47.9, 30.4, 25.4, 21.5. HRMS:
m/z calcd for C13H15NO2 (M+): 217.1103. Found: 217.1082. Compound 5a: mp 213-215 °C. 1H NMR (600 MHz, CDCl3): δ = 7.89-7.88 (m, 2 H), 7.58-7.55 (m, 1 H), 7.47-7.44 (m, 2 H), 7.18-7.15 (m, 1
H), 5.98 (br s, 1 H), 4.26 (dd, 1 H, J = 4.8, 9.6 Hz), 3.94-3.97 (m, 1 H), 3.71 (ddd, 1 H, J = 9.6, 9.6, 6.0 Hz), 2.80 (dd, 1 H, J = 18.0, 6.0 Hz), 2.55 (dd, 1 H, J = 18.0, 9.6 Hz), 1.14 (d, 1 H, J = 6.6 Hz). 13C NMR (150 MHz, CDCl3): δ = 198.2, 170.9, 142.6, 136.6, 133.6, 129.0, 128.9, 128.1, 127.0, 126.9, 49.7,
48.1, 38.0, 36.8, 19.4. HRMS: m/z calcd for C19H19NO2 (M+): 293.1416. Found: 293.1443. Compound 5b: mp 131-135 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92-7.96 (m, 2 H), 7.63 (t, 1 H, J = 7.4 Hz), 7.54-7.50 (m, 2 H), 7.22-7.20 (m, 3 H), 6.89-6.81 (m, 2 H), 5.81 (br s,
1 H), 3.91-3.87 (m, 1 H), 3.73 (dd, 1 H, J = 3.7, 9.1 Hz), 3.67 (ddd, 1 H, J = 3.0, 3.7, 6.6 Hz), 2.97 (dd, 1 H, J = 17.8, 6.6 Hz), 2.83 (dd, 1 H, J = 17.8, 3.0 Hz), 1.23 (d, 1 H, J = 6.1 Hz). 13C NMR (100 MHz, CDCl3): δ = 197.9, 170.7, 138.7, 136.4, 133.5, 129.0, 128.4, 128.1, 127.7, 127.5, 52.1,
46.5, 40.3, 36.3, 21.6. HRMS: m/z calcd for C19H19NO2 (M+): 293.1416. Found: 293.1413. Compound 6: mp 179-181 °C. IR (KBr): ν = 3429, 2924, 1670, 1499, 762, 705 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, 2 H, J = 7.8 Hz), 7.52 (t, 1 H, J = 7.3 Hz), 7.39 (dd, 2 H, J = 7.8, 7.3 Hz), 7.26-7.18 (m, 4 H), 7.14-7.10 (m, 1 H), 6.11 (br s, 1 H), 4.10 (ddd,
1 H, J = 9.8, 9.8, 5.4 Hz), 3.65-3.55 (m, 3 H), 2.81 (dd, 1 H, J = 6.3, 17.8 Hz), 2.68 (dd, 1 H, J = 10.7,17.8 Hz). 13C NMR (100 MHz, CDCl3): δ = 199.3, 170.8, 140.9, 136.0, 133.2, 128.5, 128.4, 127.8, 126.8, 46.8, 44.2,
41.6, 37.8. HRMS: m/z calcd for C18H17NO2 (M+): 279.1259. Found: 279.1242.